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A MODIFIED METHOD OF INTEGRAL RELATIONS FOR SUPERSONIC 

NONEQUILIBRTUM FLOW OVEB A WEDGE 

By Perry A .  Newman 
Langley Research Center 

SUMMARY 

The standard method of i n t eg ra l  re la t ions  has been modified so  t h a t  be t t e r  
r e su l t s  a r e  obtained f o r  inv isc id  nonequilibrium supersonic flow over wedges. 
The polynomial prof i les  assumed f o r  cer ta in  integrands i n  the standard method 
a r e  not used. Instead, the def in i te  i n t eg ra l  i t s e l f  i s  replaced by an expres- 
sion i n  which the values of the integrand a t  the  upper and lower limits a re  
weighted t o  account f o r  the  nonequilibrium ef fec ts .  These weighting functions 
a re  computed by considering relaxation h i s to r i e s  along frozen-flow streamlines. 
Conversion of the p a r t i a l  d i f f e r e n t i a l  flow equations t o  ordinary equations 
using weighting functions i s  no more laborious than i n  the standard method. 

The resul t ing approximate system i s  integrated smoothly from the frozen- 
flow shock values t o  the  equilibrium asymptotic values. The entropy layer  on 
the  wedge surface i s  not predicted by the  approximate system but r e su l t s  from 
integrat ion of a s e t  of corrected equations. Numerical r e su l t s  a re  presented 
f o r  vibrat ional  relaxation of a pure diatomic gas (nitrogen) and dissociation 
relaxation of the Lighthill-Freeman "ideal  dissociat ing gas" (oxygen). These 
par t icu lar  cases have been selected so tha t  a comparison can be made with 
ex is t ing  charac te r i s t ics  calculations.  The r e su l t s  a re  a lso compared with 
those of the standard method of i n t eg ra l  re la t ions  a s  well a s  with those of a 
recent perturbation solution. 

INTROWCTION 

The method of i n t eg ra l  re la t ions  i s  a numerical method f o r  solving systems 
of nonlinear p a r t i a l  d i f f e r e n t i a l  equations by transforming them t o  approximate 
systems of ordinary d i f f e r e n t i a l  equations. This method and i t s  applications 
have been reviewed recently by Belotserkovskiy and Chushkin i n  reference 1 
which gives a very good description of the  method a s  well a s  an extensive bib- 
liography. 
appeared i n  the l i t e r a t u r e .  
t i o n a l  relaxation of a pure diatomic gas over wedges and cones, while Shih, 
e t  a l .  ( r e f .  4) have considered the chemical relaxation of a i r  ( 5  species) over 
a blunt body. Other methods which have been used t o  compute nonequilibrium 

Two recent applications of the method t o  nonequilibrium flow have 
South ( r e f s .  2 and 3 )  has considered the vibra- 



flow over pointed bodies include the  method of character is t ics  ( fo r  example, 
refs. 5 t o  8) and perturbation methods (ref. 9) .  

The obvious advantage of t he  in t eg ra l  methods i s  tha t  highly e f f i c i en t  
techniques for solving ordinary d i f f e ren t i a l  equations have been developed f o r  
high-speed d i g i t a l  computers. 
those reported herein w e r e  computed i n  less than 5 minutes per case on an 
IBM 7090 electronic data processing system. 
d e t a i l  within the  shock layer.  
have t h e i r  l imitat ions.  
method of character is t ics  t o  nonequilibrium problems i s  not straightforward; 
furthermore, the  computation t i m e  can be very long, even on high-speed com- 
puters. The major d i f f i cu l ty  with the perturbation method i s  i n  application 
t o  problems of p rac t i ca l  i n t e re s t  - t h a t  i s ,  one i s  interested i n  dissociation 
phenomena, fo r  example, only i f  dissociation i s  significant;  then the  perturba- 
t i on  i s  no longer s m a l l .  
under which h i s  perturbation solution i s  va l id .  

Results given i n  references 2 and 3 as w e l l  as 

The major disadvantage i s  lack of 
The other methods mentioned previously a l so  

A s  i s  pointed out i n  reference 6, application of the  

Lee ( r e f .  9) careful ly  delineates the  conditions 

I n  applying the  standard method of i n t eg ra l  re la t ions  (defined i n  ref.  1 
as the simple method) t o  nonequilibrium flow past  wedges and cones, South 
( r e f .  2) found t h a t  the  asymptotic value ( far  from the  t i p )  of the surface 
vibrat ional  energy did not converge as the  order of the approximation 
increased. The surface nonequilibrium rate equation of the approximate system 
caused erroneous overshoots or undershoots of about equal magnitude i n  the  
asymptotic value of t h i s  energy. Reference 2 indicates t h a t  t h i s  phenomenon 
w a s  due t o  the existence of three d i s t inc t  zones i n  the shock layer  far from 
the t i p :  
zone i n  the  in t e r io r ,  and (3) an entropy layer  next t o  the  body surface. The 
thicknesses of zones (1) and ( 3 ) ,  r e l a t ive  t o  tha t  of the en t i re  shock layer,  
get smaller with distance from the  t i p  but they do not vanish - t ha t  i s ,  the  
shock boundary condition of frozen flow remains, even though most of the  shock 
layer i s  i n  equilibrium. Thus, p rof i les  of flow variables across the shock 
layer approach discont inui t ies  and cannot be adequately approximated by low- 
order polynomials. 

(1) a relaxation zone j u s t  behind the  shock wave, (2 )  an equilibrium 

The idea of t he  present modification i s  t o  replace integrals  across the 
shock layer  with an expression i n  which the  values of the integrand a t  t he  
shock wave and on the  wedge surface are weighted t o  account fo r  the  nonequilib- 
r i u m  e f fec ts .  
relaxation his tory along frozen-flow streamlines - t h a t  i s ,  the  shock geometry 
(shock angle and streamline posi t ions) ,  as w e l l  as the  pressure and velocity, 
i s  taken as  i f  the  flow were frozen f o r  the  determination of the weighting 
functions. These functions depend on t h e  distance along the surface from the 
wedge t i p .  I n  t h e  standard method, an equal weight i s  given t o  each s t r i p  
boundary and t h i s  weighting i s  not a l te red  with distance downstream. 

I n  general, these functions a re  determined by considering the  

I n  order t o  tes t  the method, two cases using different gas models have 
been computed. I n  the  first,  hereafter ca l led  gas I, vibrat ional  relaxation i n  
a pure diatomic gas i s  considered. The second, hereaf ter  cal led gas 11, i s  the  
Lighthill-Freeman " idea l  dissociating gas" ( r e f s .  10 and 11). 



SYMBOLS 

Primed quant i t ies  a re  dimensional; unprimed quant i t ies  are nondimensional. 
(See eqs. ( 7 ) ,  (8), and ( g ) . )  Suffix I on an equation number indicates t ha t  
the  equation applies only t o  gas I, w h i l e  the  suff ix  I1 applies only t o  gas 11. 

a nonequilibrium weighting function (see eq. (18)) 

C1 vibrat ional  nonequilibrium r a t e  parameter 

c2 dissociation nonequilibrium ra t e  parameter 

frozen-flow specif ic  heat a t  constant pressure cP 

E vibrat ional  energy 

equilibrium vibrat ional  energy Eeq 

F defined by equation (15) 

g = p + pu* 

h = pv 

H = p + pv2 

K 

K i  

L' 

M 

P 

7 Q 
- 
Q 

S 

t = pu 

T 

dissociation energy per  mole of the diatomic species divided by the 
product of Ti and the molar gas constant f o r  the  diatomic species 

functions defined i n  appendix B 

nonequilibrium length scale 

frozen-flow Mach number 

pressure 

defined by equation (15) 

defined by equation (19)  

dissociation nonequilibrium rate parameter 

temperature 
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u,v velocity components in x- and y-direction, respectively 

v total velocity 

X,Y 

2 = puv 

U 

P shock-wave angle 

Y 

6 shock-layer thickness in y-direction 

E: vibrational nonequilibrium driving force 

e wedge half -angle 

@V characteristic vibrational temperature 

A shock-layer included angle, p - 8 

5 dummy variable for x 

P density 

coordinate along and normal to wedge surface, respectively 

degree of dissociation, mass fraction of atoms 

ratio of frozen-flow specific heats 

characteristic density of dissociation PD 

T vibrational relaxation time 

6 dissociation nonequilibrium driving force 

Subscripts: 

0 

C corrected surface quantity 

i index 

W 

W initial value (x = 0) of w subscripted quantity 

00 free -stream quantity 

6 

quantity evaluated at surface (y = 0) 

quantity used in determination of weighting functions 

quantity evaluated at shock wave (y = 6) 
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( )o quantity. evaluated a t  the  t i p  (x = 0, y = 0) ,  t h a t  i s ,  i n i t i a l  value 

Bars over symbols indicate  average values. 

PRGBLEM DEFSNITION 

General Description 

The problem t o  be discussed i s  the steady supersonic flow of a pure dia- 
tomic gas pas t  wedges a t  zero incidence. The shock wave i s  attached and the 
flow i s  inviscid and isoenergetic with only one diss ipat ive mechanism. 
d i f fe ren t  gas models a re  considered; i n  the  first (gas I) the diss ipat ive mech- 
a n i s m  i s  the vibrat ional  relaxation. 
Freeman " idea l  dissociating gas" ( r e f s .  10 and 11) where the  diss ipat ive mech- 
anism i s  the dissociation relaxation. 

Two 

The second (gas 11) i s  the Lighthi l l -  

The r e su l t s  for  gas I can be d i r ec t ly  compared with the standard method 
r e su l t s  given i n  reference 2 and the  charac te r i s t ics  r e su l t s  given i n  re fer -  
ence 5 .  For gas 11, the r e su l t s  f o r  both the standard and modified methods a re  
presented herein. These r e su l t s  a r e  compared with the  charac te r i s t ics  r e su l t s  
of reference 7. 

Basic Equations 

The geometry and coordinate system a re  pictured i n  f igure 1 and are  iden- 
t i c a l  t o  those used i n  reference 2. The basic flow 
and r a t e  equations a re  wri t ten a s  ( r e f .  3 ,  special-  
ized f o r  the wedge) 

Continuity : 

d d -b) + -(pv) = 0 
ax aY 

x-momentum: 

-(pu2 a + p )  + -(puv) a = 0 
ax aY 

y-momentum: 

a a 
-(puv) + -(pv2 + p )  = 0 ax aY 

Figure 1.- Geometry and 
coordinate system f o r  
nonequilibrium f l o w .  

( 3 )  

5 



I 

Rate : 

-(puu) a + -(pvu) a - p@ = 0 

ax ay (4.11) 

where E is the nondimensionalized vibrational energy, a is the degree of 
dissociation, and E and @ are the nonequilibrium driving forces for gases I 
and 11, respectively. 

The energy and state equations for gases I and I1 are 

Energy: 

(l + F)T + u -I- a2(u2 + v2) = 1 + - 1 k2 
tT 6 

State : 

- 4 2  M, p = (1 + u)~T 
3 

(6.11) 

The free-stream ratios of frozen-flow specific heats 
4/3 for gas I1 have been used in equations (5) and (6). 
that 
vibrational-energy mode is treated. (See ref. 10.) 

ym of 7/5 for gas I and 
It should be noted 

7 = 4/3 for gas I1 (when a = 0) because of the manner in which the 

Quantities have been nondimensionalized as follows (primes denote dimen- 
sional quantities): 

E' 
c$T&, 

The quantity E is nondimensionalized as E = -. 

6 



A s  i n  references 2 and 5 ,  the  length scale  L' f o r  gas I i s  taken t o  be 

where T'(O,O) 
A l s o  T '  and the driving force E are  given a s  

i s  the vibrat ional  relaxation time on the  surface a t  the t i p .  

E =  (Eeq - E )  
7 

The quantity C 1  i s  an experimentally determined r a t e  parameter, 0: i s  the  
charac te r i s t ic  vibrat ional  temperature, and Eeq i s  the equilibrium value of 
E f o r  the temperature T.  A s  i n  reference 5 ,  C 1  was determined from the 
data of Blaclanan ( r e f .  12 ) .  

For gas 11, the  length scale  L' i s  taken a s  tha t  given i n  reference 7 a s  

(8.11) 

where C2 i s  the C of references 7 and 11. (Note, however, t h a t  reference 7 
does not use t h i s  length sca le . )  
6 

A s  i n  references 7 and 11, the  driving force 
i s  then taken t o  be 

The quant i t ies  C2 and S are  experimentally determined r a t e  parameters while 
i s  the charac te r i s t ic  density of dissociation defined by Lighth i l l  

P;, 

7 
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( r e f .  10 
vani shes 
C2 and 

). , the  equilibrium condition i s  obtained (ref. 10). 
S 

Note t h a t  when the quantity within the  brackets of equation (9.11) 
A s  i n  reference 7, 

were taken from the  data of Matthews ( r e f .  13) f o r  oxygen. 

Boundary Conditions 

The boundary conditions a re  those given i n  reference 2. There it i s  
assumed t h a t  the  free-stream nonequilibrium energy variable i s  zero and t h a t  it 
remains zero a s  the  flow passes through the  shock wave. That i s  

E ( x , ~ )  = Eg(x) = E, = 0 (10.1) 

a(x,6) = aa(x) = a, = 0 ( 10.11) 

Thus the  frozen-flow shock-wave re la t ions  apply and a l l  quant i t ies  immediately 
behind the shock wave a re  functions of r,, &, 8, and p(x).  These rela- 
t ions ,  taken from reference 14, a re  given i n  appendix A .  Since p(x) i s  the  
only x-dependent quantity i n  a shock function f (x ,6)  z fg(x) ,  then 

Further, the shock wave i s  attached a t  t h e  t i p ,  so  t h a t  

6 ( 0 )  = 0 

The location of the shock wave downstream i s  

a6 - = t an  h 
dx 

where A = p - 8. Final ly ,  the  surface i s  a 

obtained from 

streamline so tha t  

= o  

8 



APPROXIMATE INTEGRAL SOLUTION 

General Equations 

The method of i n t eg ra l  re la t ions converts a system of nonlinear p a r t i a l  
d i f f e ren t i a l  equations, such as equations (1) t o  ( 4 ) ,  t o  an approximate set of 
nonlinear ordinary d i f f e ren t i a l  equations which can be integrated numerically. 
Equations (1) t o  (4)  are i n  the  divergence or conservation form. That i s  

Equations (15) are integrated across the  shock layer,  y = 0 t o  6(x),  t o  
obtain 

where Leibnitz's ru le  for different ia t ion under the  in tegra l  sign has been 
used. I n  the standard method, polynomial prof i les  i n  y a re  assumed fo r  the 
quant i t ies  Qi(x,y) and Fi(x,y) .  For the  one-strip approximation with a 
l i nea r  p ro f i l e  ( re f .  3),  equations (16) become 

where Qi,o = Qi(x,O), e tc .  
and three-s t r ip  approximations i n  reference 2. 

Equations analogous t o  (17) are  given fo r  the two- 

I n  t he  modified method presented herein, the  in tegra ls  i n  equations (16) 
are replaced by 

9 



where a i  i s  the  nonequilibrium weighting function for Q i .  With Qi(x) 
defined as 

a i  is obtained as 

- 
- Qi,o 

= 
Qi,g - Qi,o 

I n  the  next section, it i s  shown how the  values of a i  are computed by 
using equations (19) and (20).  
by equations (18), equations (1) t o  (4)  are transformed t o  the  following 
approximate ordinary d i f f e r e n t i a l  equations: 

With the  in tegra ls  i n  equations (16) replaced 

F(1 - a l ) 2  + 6al - dtg - 6 ( t 0  - tg)= a1 + (1 - al)( to  - tg) tan h + hg = 0 
dx 

dzg + 6zg - da3 - (1 - a3)zg t an  + Hg - po = 0 ga3 dx dx 

(24.1) 

(24.11) 

10 



where 

4 

t = pu 

h = pv 

g = pu2 + p 

H = pv2 + p 

z = puv 

and "5, the  weighting function f o r  the  driving force, i s  given by equa- 

t ions  (18) t o  (20) where F i  replaces Qi. Equations (11) and (23) immedi- 
a t e ly  give the d i f f e r e n t i a l  equation fo r  p .  Equations (21),  (23),  and (24) 
give the d i f f e ren t i a l  equation for EO or w. In order t o  separate the d i f -  
f e r e n t i a l  equations fo r  po and I+,, the energy and s t a t e  equations ( ( 5 )  and 
( 6 ) )  must be d i f fe ren t ia ted  and used with equations (21) t o  (24) .  
separated equations used i n  the numerical integrat ion a re  given i n  appendix B. 

The four 

Determination of the Weighting Functions 

The nonequilibrium weighting functions ai a re  determined by integrat ing 
the  streamline r a t e  equation along the frozen-flow (or  even equilibrium-flow) 
streamlines. 
dix A )  where 

The frozen-flow solution i s  the oblique shock solution (appen- 

The shock wave i s  s t ra ight  and the  streamlines a re  p a r a l l e l  t o  the  wedge sur- 
face. The surface streamline r a t e  equation (va l id  f o r  a l l  values of x)  i s  

11 



obtained by substitution of equation (1) into equation (4) and application of 
the surface boundary condition (eq. (14)) and is 

or 

Assumptions.- In reference 5 it is shown that for vibrational relaxation, 
integration of the surface streamline sate equation with the velocity held con- 
stant gave energy and temperature results which compared favorably with the 
characteristics results. Thus in determining the weighting functions, it is 

first assumed (for both gas models) that the velocity 
is constant (u = uw; v = 0); this means that the pres- 
sure is also constant (p = pw). And second, the depar- 
ture of the streamlines and shock wave from straight 
lines due to nonequilibrium effects is neglected. Thus 
(see fig. 2) 

Figure 2.- Geometry and 
coordinate system 
f o r  determination of 
weighting functions.  

In the determination of c(x), it is assumed that 
a quantity Q(x,y) depends only on the distance along 
the streamline from the shock wave to the point 
that is (see fig. 2) 

(x,y), 

since in frozen flow, the surface streamline is like 
all other streamlines. Also it can be seen from fig- 
ure 2 that 

The integral over y in equation (19) can be made into an integral over 
5 by using equations (28) to (SO). Then 

12 



Now define XI' as x" = x - 5 and equations (31) become 

Equations.- With the approximations of the previous section, the values of 
defined in equations (18) are computed from equations (20) as ai 

and 

or 

The quantities with the subscript w indicate that the quantities are computed 
along frozen-flow (or equilibrium-flow) streamlines and are functions of either 
& or w, which are defined from equations ( 2 7 )  as 



I 

with 

Tw(x) 1 + - 5 

J 
where T ~ ,  Eeq,w, and eW are given by equations (9.1) with T = T, for 

gas I and 

with 

for gas 11. The quantities with the subscript W are the initial values 
(x = 0) of the w subscripted quantities. The barred quantities in equa- 
tions (33) and (34) are computed from equations ( 3 2 )  where Qi,o(x") = Qi,W(~"). 

It was found that - dai 
dx 

was computed accurately enough as 

dai 
dx Ax 

ai(x + Ax) - ai(X) 
~- - - -  ( 3 7 )  

14 



Tip Region 

It can be seen from the  computational equations given i n  appendix B t h a t  
t he  derivatives appear t o  be unbounded a t  t he  t i p  (x = 0) because the shock 
wave i s  attached, t ha t  is, 6 ( 0 )  = 0. Since these derivatives are  l inear ly  
dependent on K i  and the  coeff ic ients  of K i  do not vanish as x 3 0, the  
necessary condition t h a t  a regular solution ex is t s  a t  the  t i p  i s  
When the  equations f o r  Ki 
frozen-flow oblique shock solution i s  obtained independent of the values of the  
nonequilibrium weighting functions ai(O) - t h a t  is ,  fO(0) = fg(0) .  Thus the  
equations of appendix A and the  e n e r a  and s t a t e  equations ( ( 5 )  and ( 6 ) )  give 
the  t i p  (or i n i t i a l )  solution. 

Ki(0) = 0. 
a re  set equal t o  zero, it can be seen tha t  the 

I n  order t o  get the  i n i t i a l  derivatives, the quant i t ies  l i m k )  must be 
x 4 0  

evaluated. The i n i t i a l  values of a i  w i l l  be required. It i s  shown i n  appen- 
dix C. t h a t  the  i n i t i a l  value of a l l  a i  i s  1/2. The i n i t i a l  derivatives a re  
obtained i n  appendix D. It can be seen t h a t  fo r  gas I, these are the same as 
those obtained by South i n  reference 3 (see eqs. (35) t o  (39) of ref. 3 )  where 
it i s  pointed out t h a t  these derivatives are the exact wedge-tip gradients 
derived by Sedney ( r e f .  15). 

Asymptotic Behavior 

Far from the  t i p ,  most of the  shock layer w i l l  be i n  equilibrium so t h a t  
the weighting functions, defined by equations (18) t o  ( 2 0 ) ,  w i l l  be changing 
very l i t t l e  with x. Thus 

Furthermore, since Qi,6 # Qi,o and qi + Qi,o, equation (20) gives 

l i m  (ai) = o 
X + W  

(39) 

With equations (38) and (39) subst i tuted i n t o  the  equations of appendix B it 
can be seen t h a t  the  derivatives of PO, LQ, and EO (or q) go t o  zero 

since 6 + m  as x -+ 03. It i s  not immediately obvious t h a t  dp/dx tends t o  
zero because of the  presence of the  fac tor  
t i on  (Bg). However, it can be shown (by using a m e a n  value theorem f o r  def i -  
n i t e  integrals)  t h a t  

6a3 i n  the  denominator of equa- 



x+m 

l i m  sa3) = Constant 
x+m ( J 

Thus dp/dx will vanish a s  x + m  i f  the condition 

l i m  ( ~ 3 )  = o 
X+W 

i s  sa t i s f i ed .  

If the derivatives of the  flow variables to and QO had been taken with 
respect t o  In x instead of x, t he  physical s i tua t ion  would s t i l l  require 
these derivatives t o  vanish as x + m ,  since an equilibrium condition w i l l  be 
reached. Then K 1  and K2 should a l so  have t o  approach zero a s  x + a  

before the system would stop driving. The simultaneous numerical solution of 
t h i s  asymptotic condition 

l i m  (Kl) = l i m  (K2) = l i m  (K3) = 0 (42) 
X 3 W  x+ Q) x 4  03 

together with the  equilibrium condition and the  s t a t e  and energy equations 
gives the same surface properties and shock angle a s  those obtained from the 
equilibrium-flow solution behind an equilibrium shock wave. It is expected 
then tha t  t he  modified in t eg ra l  method will give the  frozen-flow solution i n  
the t i p  region and the equilibrium solution f o r  the surface properties and 
shock angle f a r  downstream. 

A s  was indicated i n  the  "Introduction," the  standard method as  applied by 
South ( r e f .  2) gave r i s e  t o  unrea l i s t ic  asymptotic values fo r  the vibrat ional  
energy. The asymptotic form of the surface r a t e  equation fo r  the one-strip 
approximation from reference 2 can be wri t ten a s  

The shock-wave driving force €8 i s  always posi t ive.  Thus the surface driving 

force cO must assume unrea l i s t i c  negative values before l i m  - = 0 as  it 

should when an equilibrium condition i s  reached. 
from the modified method i s  the asymptotic form of equation (BIO.I) 

X+ e) 
The corresponding equation 

16 



x+ 03 

Note tha t  t h i s  i s  the exact surface r a t e  equation 
For equilibrium, cO i s  ident ica l ly  zero. 

Corrected Equations 

en by eqi 

(44.1) 

3tion (27.1). 

It was shown previously t h a t  the exact surface r a t e  equations a re  given by 
Likewise from equations (l), (2) ,  and (14) the  exact surface equation (27).  

momentum equation ( f o r  a l l  x) i s  

With the shock angle and pressure d is t r ibu t ion  obtained from the equations 
of appendix B, the  exact equations (27) and (45) were integrated ( a s  auxi l iary 
equations t o  the approximate s e t  of appendix B) i n  order t o  obtain the cor- 
rected surface properties,  defined a s  

and for  gas I, 

with 

(48.1) 

p c = - -  7 G % o  
5 Tc J 

where T C ,  Eeq,c, and a re  given by equations (9.1) with T = Tc. For 

gas I1 the  corresponding equations are 



with 

(48.11) 

J 

A s  South points out i n  reference 2, it i s  tempting t o  replace equa- 
t ions  (B10) and (B11) with equations (27) and (45), respectively. 
w a s  found tha t  such a hybrid system e i ther  did not integrate  s tably or had 
worse asymptotes than the  approximate system. Belotserkovskiy and Chushkin 
( ref .  1) indicate  t h a t  extraneous equations may appear during the  construction 
of the approximate set and s t a t e  t ha t  these extraneous equations must be more 
accurately sa t i s f i ed  with increasing approximations (more s t r i p s ) .  
sense then, the  corrected equations (46) and (47) are integrated ( i n  addition 
t o  the  approximate set)  i n  order t o  get be t t e r  surface values and t o  check the 
approximate set. It will be seen t h a t  the  entropy-layer e f fec ts  are obtained 
from these equations. 

However, it 

I n  t h i s  

Numerical Integration 

The approximate system of ordinary d i f f e ren t i a l  equations of appendix B, 
the  corrected equations (46) and (47),  and frozen streamline r a t e  equa- 
t ions  ( 3 5 )  were integrated on an IBM 7090 data processing system using a f i rs t -  
order Euler scheme. 
appendix D) w a s  large ( r e l a t ive  t o  successive s teps)  i n  order t o  get away from 
the t i p  indeterminacy. 
5 minutes. 

The f i rs t  integration s tep (using i n i t i a l  derivatives of 

Results fo r  both cases w e r e  computed i n  less than 

When gas 11, the  Lighthill-Freeman model ( r e f s .  10 and ll), w a s  used, it 

South (ref.  2) a l so  found tha t  t h i s  c r i t e -  
was found tha t  a hyperbolic s t a b i l i t y  c r i te r ion  ( fo r  supersonic flow) had t o  be 
applied fo r  a stable integration. 
r ion had t o  be applied when higher approximations were made i n  the  standard 
in tegra l  method f o r  gas I. 

For the  one-strip approximation used herein, data a re  known a t  the  shock 
wave and on the  wedge surface a t  a given value of x. The intersect ion of the 
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right-running character is t ic  from the  shock point 
and the  left-running character is t ic  from the  surface 
point determines the  maximum step s ize  which can be 

pa ra l l e l  streamlines and constant l oca l  Mach number, 
the  geometry ( f i g .  3 )  gives 

used fo r  a s table  integration. (See f i g .  3 . )  For Shock wove 

AX5-Mo2 2 "( - f 2  (49) 

Figure 5 of reference 2 shows the  e f fec t  of t h i s  
s t a b i l i t y  c r i t e r ion  f o r  a two-strip (standard in te -  
gralmethod) integration. 
found i n  the  one-strip modified method reported 
herein. 

This same behavior w a s  

Figure 3 . -  Approximate 
hyperbolic s t ab i l i t y  
cr i ter ion.  

RESULTS AND DISCUSSION 

In  order t o  assess the  accuracy of the  modified in tegra l  method the  two 

Case I i s  f o r  vibrat ional  relaxation i n  pure nitrogen (gas I) and 
cases f o r  which character is t ics  r e su l t s  a re  available (refs. 5 and 7)  have been 
selected. 
case I1 i s  fo r  t he  Lighthill-Freeman (refs. 10 and 11) idea l  dissociating gas 
model using constants f o r  oxygen (gas 11). Case I has been calculated by using 
the  standard in t eg ra l  method i n  references 2 and 3 .  A recent perturbation 
solution has a l so  been compared ( r e f .  9 ) .  

The parameters fo r  case I are: 

e = 40.02~ 

T& = 30O0 K 

C 2 = 0.4655 x lo4 
T& 

Those f o r  case I1 are: 



Case I1 i s  the same as  
150,000 f e e t  a l t i t ude .  

% = 32 

T& = 281.24O K 

= 1.33389 x 10-3 atm pco 

K = 211.136 

s = 2.5 

' = 150 g/cm3 PD 

case I of reference 7 and corresponds t o  oxygen a t  about 

Vibrational Relaxation 

Figure 4 shows the  var ia t ion of the  shock-wave angle and cer ta in  surface 
quant i t ies  as  functions of the nondimensional surface distance x fo r  case I. 
The r e su l t s  of the  modified in t eg ra l  method ( s o l i d  curves) a r e  seen t o  vary 
smoothly from the  frozen-flow values behind a frozen shock wave t o  the 
equilibrium-flow values behind an equilibrium shock wave ( t i c k  mark labeled 
eq).  
surface vibrat ional  energy and surface temperature a re  obtained from the  cor- 
rected equations (46) and (47). 
C ' s  Note t h a t  t o  the scale used these 
a re  a l so  the corrected r e su l t s  f o r  the standard in t eg ra l  method. It can be 
seen t h a t  the agreement with the charac te r i s t ics  computation ( c i r c l e s )  of r e f -  
erence 5 i s  excellent.  The perturbation r e su l t s  of reference 9 (hatched l i n e )  
a re  not a s  accurate a s  e i the r  the  modified or the  three-s t r ip  standard in t eg ra l  
r e su l t s .  The erroneous overshoots or  undershoots i n  the  asymptotic value of 
the surface vibrat ional  energy (which a re  obtained i n  a l l  approximations of the 
standard method) do not appear i n  the modified r e su l t s .  

However, the proper nonequilibrium asymptotes ( the entropy layer )  f o r  the  

These r e su l t s  a r e  given a s  so l id  l i nes  with 
through them i n  f igures  4(c) and (a) .  

The var ia t ion of the nonequilibrium weighting flmctions with x i s  shown 
i n  f igure 5.  It can be seen t h a t  these functions monotonically decrease from 
the t i p  value of 1/2 toward zero a s  x increases.  

Sedney ( r e f .  15) points out t ha t ,  f a r  from the t i p ,  equilibrium flow i s  
inconsistent with the frozen shock-wave boundary condition and a l so  notes the 
analogy t o  viscous boundary-layer theory, where inviscid flow i s  inconsistent 
with the no-slip surface veloci ty  condition. It can be seen t h a t  nei ther  char- 
a c t e r i s t i c s  nor the  standard in t eg ra l  method r e su l t s  fo r  the shock-wave angle 
and surface pressure ( f ig s .  4(a) and (b) )  exactly approach the equilibrium 
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0 Chomctnisllcr ( r d . 5 )  

Stmdord m e -  strip (ref.2) 

_ _ _ _  standard Ihrea -strip (nf.2) 

+ - + - Psrturbotm (r0f.S) 

58 

.5a 

.57 

PO 
.56 

55 

O i 2 3 f 5 6 7 8  
5 4  

0 1 2 3 4 5 5 7 8  

(a) Shock-wave angle as a function (b) Surface pressure as a function 
of x. of x. 

-- .:[ /---- 
7 /' + Cwraelcd surfme tempemtun 

fa both intcpml methods in 011 
approrimolianr (lo fix scale of 
this figure I 

(c) Vibrational energy on surface as a (a) Surface temperature as a 
function of x. function of x. 

Figure 4.- Nonequilibrium vibratjonal flow over a wedge. Case I. 
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value. I n  the  formulation of the 
standard in t eg ra l  method t h i s  frozen 
boundary condition i s  assigned a def- 
i n i t e  weight (with respect t o  the  
en t i r e  shock layer )  which i s  not 
a l t e r ed  f a r  downstream. The method of 
charac te r i s t ics  would properly weight 
the frozen boundary condition i f  the 
t i p  region mesh s i ze  could be main- 
tained. 

stream are  desired. Thus, i n  both of 
these methods, the  frozen boundary 
condition i s  not properly weighted f a r  
downstream. The present modified flow over a wedge. Case I. 
i n t eg ra l  method weights t he  boundary 
condition so t h a t  i t s  e f f ec t  f a r  down- 
stream does not dis turb the major portion of the shock layer  which i s  i n  equi- 
librium. 
sentat ive of the relaxation zone behind the  shock a t  a l l  values of x and a 
small s tep s ize  i s  used i n  the  t i p  region. 

I I I I I I I I  ca l ,  however, i f  r e su l t s  f a r  down- 0 1 2 3 4 5 6 7 8  

This procedure i s  not p rac t i -  

Figure 5.- Variation of the  weighting func- 
t i o n s  for nonequ-ilibrium vibrat ional  

I n  t h i s  method the t ip-region relaxation zone i s  taken t o  be repre- 

Dissociation Relaxation 

Figure 6 shows the var ia t ion of t he  shock-wave angle and cer ta in  surface 
quant i t ies  as  functions of the nondimensional surface distance x f o r  case 11. 
Again it i s  seen t h a t  the  modified in t eg ra l  r e s u l t s  ( s o l i d  curves) vary 
smoothly from the  frozen-flow values behind a frozen shock wave t o  the  
equilibrium-flow values behind an equilibrium shock wave ( t i c k  mark labeled 
eq).  In  f igure 6 (d ) ,  however, only the  corrected temperature i s  plot ted.  
c i r c l e s  i n  f igure 6 a re  the charac te r i s t ics  r e s u l t s  of reference 7. The curves 
with long and short  dashes i n  f igure 6 give the  r e su l t s  of the  one-strip stand- 
ard method. 

The 

I n  determining the weighting functions, frozen conditions behind a frozen- 
flow shock wave were used since this i s  the condition i n  the  t i p  region. How- 
ever, beyond about one length scale downstream, the  shock-wave angle i s  very 
close t o  t h a t  f o r  equilibrium flow. I n  order t o  see whether or  not the frozen 
and equilibrium geometries give d i f fe ren t  r e su l t s ,  the  l a t t e r  was a l so  used fo r  
determining the  weighting functions i n  case 11. These r e su l t s  a re  given i n  
f igure 6 a s  dashed curves. The differences between the frozen- and equilibrium- 
geometry r e su l t s  a re  prac t ica l ly  negligible.  The weighting functions them- 
selves as  determined f o r  both s i tua t ions  a re  p lo t ted  a s  a function of x i n  
f igure 7. 
x) toward zero. 

Again it i s  seen t h a t  they decrease monotonically (with increasing 
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Modified one-strip. frozen paomalry 

Modified one-strip. equilibrium giom*lr). 
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(b) Surface pressure as a function of x. 

F i w e  6.- Nonequilibrium flow of Lighthill-Freeman 
"ideal dissociating gas" over a wedge. Case 11. 
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intagrol mathods (to tha 1c0Ie of this 
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( a )  Corrected surface temperature as a function 
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Figure 6.- Concluded. 
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A s  w a s  s ta ted  previously, 
reference 5 shows t h a t  t he  
constant-velocity assumption 
(used herein only i n  deter-  
mining the  weighting functions) 
gave r e su l t s  which compared 
favorably with the characteris-  
t i c s  r e su l t s  f o r  vibrat ional  
relaxation. Figure 8 shows the  
e f fec t  of t h i s  same assumption 
on the degree of dissociation 
and temperature fo r  case I1 
(dissociation relaxation).  The 
curve labeled W i s  f o r  the 
constant-velocity assumption 
while the curve labeled C 
gives the corrected value of 
the degree of dissociation. 
The values of Tw and Tc 
appear t o  be the same; they 
differed by l e s s  than 1 percent 
over the en t i r e  integrat ion.  
Thus, the constant-velocity 

60- 

50-  

40- 

30- 

T 

20 

10- 

0 

Figure 7.- Variat ion of t h e  weighting functions for 
nonequilibrium flow of Lighthill-Freeman " idea l  
d i ssoc ia t ing  gas" over a wedge. Case 11. 

TJOI - 

- 

-6 

assumption appears t o  give f a i r l y  good r e su l t s  f o r  the  var ia t ion of temperature 
~ and degree of dissociation along the wedge surface. 

From f igures  4 and 6 it can be seen t h a t  the asymptotic agreement between 
the modified and charac te r i s t ics  methods i s  not as  good i n  case I1 as  i n  case I. 
It i s  believed tha t  the  in t eg ra l  r e su l t s  a r e  more nearly correct f a r  downstream. 
An entropy layer ex i s t s  on the surface and the  manner i n  which an upper bound 
f o r  the nonequilibrium asymptotes such a s  
surface temperature and energy should be com- 
puted i s  not known. For the  cases considered 
it appears t h a t  the equilibrium condition 
behind the  frozen-flow shock wave gives upper 
bounds ( t h i s  corresponds then t o  an equilib- 
r i u m  shock layer f o r  a la rger  wedge). 
t i c k  marks labeled f r  i n  f igures  4 (c )  and 
(d)  and 6(c)  and (d )  give the surface vibra- 
t i ona l  e n e r a  ( o r  degree of dissociat ion)  
and the temperature f o r  equilibrium condi- 
t ions  behind the frozen-flow shock wave. 
The lower l i m i t s  fo r  these two quant i t ies  
a re  the equilibrium values behind an 
equilibrium-flow shock wave and a re  given 
a s  the t i c k  marks labeled eq i n  f i g -  
ures 4(c)  and (d)  and 6 ( c )  and (d) .  

_ _  

The 

It i s  seen from f igures  4(c)  and (d)  
t h a t  asymptotic r e su l t s  computed f o r  gas I 
by the charac te r i s t ics  method ( r e f .  5 )  and 

1'" -Tc and Tw (to the s o l e  Of this figure1 

Figure 8.- Comparison of surface 
temperature and degree of dis- 
soc ia t ion  used i n  determining 
weighting functions with t h e  
corrected quant i t ies .  
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both in t eg ra l  methods (when corrected) a re  bounded by the fr and eq t i c k  
marks. However, f o r  gas I1 it appears from f igure 6(d) t h a t  the  temperature 
asymptote fo r  the charac te r i s t ics  computation ( r e f .  7) w i l l  not f a l l  between 
these marks a s  does the  corrected temperature obtained from the in t eg ra l  
methods. 
other asymptotic values given i n  reference 7 may a l so  be questioned. 
ence 5 ,  it i s  pointed out t h a t  when the  method of charac te r i s t ics  i s  used t o  
compute nonequilibrium flows, care must be exercised i n  the choice of both the 
f i n i t e  difference scheme and the  dependent variables.  I n  fac t ,  it was found 
t h a t  the standard difference technique w a s  not successful i n  such a computa- 
t ion.  Sedney and Gerber ( r e f .  6 )  point out t h a t  Capiaux and Washington i n  r e f -  
erence 16 ( e s sen t i a l ly  a preprint  of r e f .  7) seem t o  be using the  standard 
difference technique, but not i n  Cartesian coordinates. Nothing i n  reference 7 
indicates  t h a t  the  f i n i t e  difference scheme used i n  reference 16 has been modi- 
f ied ,  even though improved r e su l t s  a r e  obtained i n  reference 7. 

Since the  asymptotic values of a l l  flow variables  a re  interdependent, 
I n  re fer -  

The dissociation relaxation case computed by Lee ( r e f .  9 )  using the per- 
turbation method appears t o  be very unrea l i s t ic .  
turbation, the parameter p p, was s e t  t o  about 103. Lighth i l l  ( r e f .  10) 

points out t h a t  f o r  atmospheric values of density, pD/pm i s  a t  l e a s t  105. 

I n  order t o  get a small per- 

D I  

CONCLUSIONS 

The standard method of i n t eg ra l  re la t ions  has been modified t o  obtain a 
be t t e r  asymptotic behavior. 

Specific conclusions which can be drawn are:  

1. The modified in t eg ra l  method r e su l t s  vary smoothly from frozen condi- 
t ions  behin'd a frozen-flow shock wave t o  equilibrium surface conditions behind 
an equilibrium-flow shock wave. 

2. The nonequilibrium surface entropy layer  e f f ec t s  are  obtained by 
defining corrected variables from the exact surface momentum and r a t e  
equations. 

3 .  For flow over a wedge, it appears t h a t  an upper-bound for '  cer ta in  non- 
equilibrium surface entropy layer  e f fec ts  i s  obtained from the  equilibrium con- 
d i t ion  behind a frozen-flow shock wave. 

4. A s tab le  integrat ion of the approximate s e t  of ordinary d i f f e ren t i a l  
equations (obtained from hyperbolic p a r t i a l  d i f f e ren t i a l  equations) r e su l t s  
only i f  the integrat ion s tep  s i ze  i s  l imited by a s t a b i l i t y  c r i t e r ion  which i s  
re la ted  t o  the charac te r i s t ic  curves. 
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5. Computation of the  weighting functions f o r  a wedge i s  easy; f o r  more 
complex bodies t h i s  computation will be more d i f f i c u l t  since cer ta in  simpli- 
fying assumptions cannot be made. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Kampton, Va., November 5 ,  1964. 

-- .....-..... - . .... ..- .,,.,, ,.. , 
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APPENDIX A 

FROZEN-FLOW SHOCK-WAVE FELATIONS 

The required frozen-flow shock-wave re la t ions  are taken from reference 14. 

Define 

then 

u6 = (1 - A)cos 8 + A cot p s i n  8 

v6 = -(1 - A)sin 8 + A cot p COS e 

( A 5 )  

(A41 

p g = A + A  
Y h 2  

The p 
obtain the p 

derivatives of equations ( A 2 )  t o  (A5)  are a l so  needed i n  order t o  
derivatives of t he  quant i t ies  defined i n  equations (25). 

A s i n  8 - = - -  4 cos p s in  A - 
dP Y + l  sin2p 

A COS e cos p cos A - - 4 - - -  
2 ap Y + l  s i n  p 

28 
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then, for example 

APPENDIX A 

4 - = - sin p cos j3 a3 7 + l  

1 . .. . . . - ._ . - . 



AF'PENDIX B 

COMPUTATIONAL EQUATIONS 

Equations (21) t o  (24), respectively, a r e  writ ten (by using equation (11)) 
a s  : 

dz6 dp 
6a3 - - K3 

@" + Eo - dto = K41 
g ( 1  - a4)E0 dx 1 

where 

f -7 

K3 = -(-(l - a3)zg tan h + Hg - po + 6zg - 2) 

( B 4 . I )  

(B4.11)  
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AJ?PENDIX B 

t a n  A - 6b - a5)Po$o + 

Equation ( B 3 )  gives dp/dx a s  

(M.11) 

Equations ( B l ) ,  (Bk) ,  and (B9)  give the r a t e  equation fo r  gases I and 11, 
respectively, a s  

( B10. I) 

I n  order t o  separate the  d i f f e ren t i a l  equations f o r  po and ~ 0 ,  the  
energy and s t a t e  equations ( (5)  and ( 6 ) )  must be d i f fe ren t ia ted  and used with 
( B l )  t o  (B4) .  For gas I, these separated equations a re  



I 

APPENDIX B 

- 1) dx 
ud(4I 
- a4)T0 

"3 ap 
- 

- -  QO - -1 1 + 5 ..'> l2 - a2 + U0K41 

dx S ( h 2  - 1) (1 - a2) "3 ap (1 - %)To 

where Mo, the frozen-flow Mach number on the surface, is given by 

For gas 11, the corresponding equations are 

- =  duo 1 { ~ [ K 2  - A a2 K3 ] + A2%II 
dx Eto(A,t, - A3) (1 - a2 (1 - "4) 

a3 ap 

(B11.I) 

(B12. I) 

( B11.11) 

L J J  
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2J L 

where 

A3 to[ 4&2Uo2 + 3 
3(4 + ..>To 

(B12.11)  

( B l 3 . 1 1 )  

(B14.11)  
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APPENDIX C 

INITIAL WEIGHTING FUNCTIONS 

I n  order t o  obtain the  i n i t i a l  values of a i ,  the behavior of ai for  
s m a l l  x must be determined. The Maclaurin expansion f o r  Qi ,w(= Qi,o) is 

Then fo r  a small s tep Ax 
equation (32) gives 

away from the  origin,  f i r s t -order  integrat ion of 

But 

thus 

It can be seen from equations ( C 4 )  and (33) o r  (34) t h a t  

1 
2 

ai(aX) - 
i r respect ive of whether Qi,w = 0 or  not. Thus 

Had only the  f i rs t  term of equation ( C l )  been used, ai(0) would have 
been found t o  be indeterminate; thus the second term i s  needed. 
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APPENDIX D 

INITIAL DERIVATIVES 

The l i m  (:) obtained from equations (B5) t o  (a), the  boundary condi- 
x + o  

t ions,  and frozen i n i t i a l  solution (appendixes A and C )  i s  

(D4.I) 

(D4.11) 

Equations (Bl) t o  (B4) become after multiplying by 

applying the  i n i t i a l  solution 

1/6, taking l i m  , and 
x+ 0 
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= (T)o K411 

With equation (D4) subst i tuted i n t o  equation (D8), 
given as  

€ 6  (2) 0 = <  

(2) =16s 
0 ug 

and (2) are  
0 

A s  was the case i n  appendix B, the  energy and s t a t e  equations ( ( 5 )  and 
(6 ) )  must be used with equations ( D l )  t o  (D9) i n  order t o  separate the  other 
d i f fe ren t ia l s .  These i n i t i a l  derivatives f o r  gas I are  then 

( D 1 0 .  I) 

( D 1 1 .  I) 

( D12. I) 



APPENDIX D 

These equations a re  iden t i ca l  t o  those obtained by South i n  reference 3.  
gas 11, the  corresponding i n i t i a l  derivatives a re  

For 

( D 1 1 . 1 1 )  

( D 1 2 . 1 1 )  
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